Catalytic asymmetric hydroamination of unactivated internal olefins

Yang, Y.; Shi, S-L.; Niu, D.; Liu, P.; Buchwald, S. L. *Science* **2015**, *349* (*6243*), 62-66.

John Milligan Current Literature Wipf Group Meeting: July 25, 2015

Hydroamination

Common substrates:

Much more rare:

where R = alkyl

Muller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795-3892

Internal unactivated alkenes

- Ubiquitous In nature
- Readily available from elthylene cracking
 - Example: 2-butene

- 20000 metric tons produced annually
- Orthogonal to carbonyl chemistry

Internal alkenes: challenges

- Low affinity to a transition metal
- Chain walking

Internal alkenes: chain walking

Obligacion, J. V.; Chirik, P. J. J. Am. Chem. Soc. 2013, 135, 19107-19110

Internal alkenes: chain walking

Mei, T.-S.; Patel, H. H.; Sigman, M. S. Nature 2014, 508, 340-344

Central question

electrophillic amine without chain walking?

Previous work by Buchwald

Zhu, S.; Niljianskul, N.; Buchwald, S. L. *J. Am. Chem. Soc.* **2013**, *135*, 15746-15749. Zhu, S.; Buchwald, S. L. *J. Am. Chem. Soc.* **2014**, *136*, 15913-15916.

Computational predictions

Copper-hydride hydrocuparation transition state Relative computed (DFT) energies (kcal/mol):

		Ме		
	Ph 🦄	Me 🦄	Me	Me
(S)-SEGPHOS	18.1	23.2	23.7	26.0
(S)-DTBM-SEGPHOS	_	_	_	23.3

Initial results

(S)-DTBM-SEGPHOS (S)-DTBM-SEGPHOS

NMe₂

NEt₂

65

75

98%

98%

Bn

Substrate scope

. 11

Substrate scope

^{61%, 97%} ee

Unsymmetrical alkenes

Applications in medicinal chemistry

82% yield, >95:5 dr

Applications in medicinal chemistry

Duterium incoportation

• Cu-D addition is synfacial

Proposed mechanism

Computational rationalization

Conclusion

- This method constitutes a powerful hydroamination of internal, unactivated alkenes
- An inexpensive metal catalyst is used
- The products (alkyl α -branched chiral amines) are not easily accessed by other methods.
- This work illustrates an effective use of computation to predict and rationalize organometallic reactivity